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Ultrasonic tests for..phase separation in 
the vitreous systems Co-P-O and H-P-O 

B. BRIDGE, A. A. HIGAZY*  
Physics Department, Brunel University, Kingston Lane, Uxbridge, Middlesex, UK 

Original data on ultrasonically determined elastic moduli of the vitreous systems 
Co-P-O and H-P-O have been used as a phase separation test for these glasses. 
For the Co-P-O system whose compositions ranged from 5 to 60mo1% CoO, no 
evidence for phase separation in any part of the composition range 0 to 42mo1% 
CoO could be found. The possibility of a narrow miscibility gap lying somewhere 
within the remaining composition range cannot be ruled out, though electron 
microscopy gave negative results. In the case of the H-P-O system whose com- 
positions ranged from 0 to 50mo1% H20, the possibility of a miscibility gap some- 
where within this range was indicated by the elastic moduli data. It would be well 
worthwhile to perform other kinds of phase separation tests on this system, though 
this will be difficult because of the rapidity with which water is absorbed. A 
qualitative theoretical interpretation of the results is attempted, from which it is 
concluded that the phase equilibrium of these phosphate glass sytems is deter- 
mined by the vibrational energy and entropy at the melting temperature rather than 
the zero-point internal energy. 

1. I n t r o d u c t i o n  
Many oxide glasses consisting of more than one 
component have been shown to contain two- 
phase or multi-phase submicrostructures typi- 
cally as small as 5 to 50 nm (for example K 2 0 -  
SiO 2, PbO-SiO2, B20 3 GeO3, SiO 2 GeO 2, 
PbO-GeO2 and PbO-P20 5 glass systems). This 
phase separation results from liquid-liquid 
immiscibility which is widespread in glass-form- 
ing systems [1-5]. In recent reviews [6, 7] exten- 
sive bibliographies of attempts to describe the 
mechanism theoretically have been given. From 
the abundance of experimental results obtained 
to date concerning phase separation in glass, the 
following general propositions can be made on 
the most probable phase structures of oxide 
glasses: 

(a) Melts consisting of a single component 
(for example SiO2, P205, B203, GeOz etc), i.e. of 
a basic network former only, will, as a rule, 
solidify homogeneously. 

(b) Melts whose compositions correspond to 
defined, stable chemical compounds (for example 
sodium metaphosphate), i.e. contain a single 
kind of structural element only, also solidify 
homogeneously. 

(c) Melts consisting of two or more oxides 
whose compositions are intermediate between 
two stable compounds may tend to phase 
separation. The tendency is at least in part deter- 
mined by the relative strengths and coordination 
numbers of the different types of bond present in 
the melt. 

Most studies of phase separation in glasses 
(chiefly silicate and borosilicate glasses) have 
been made by means of electron microscopy. It 
is perhaps less well known that it is possible to 
perform a test for the presence or absence of 
two-phase systems ultrasonically, from an 
appropriate theoretical analysis of the com- 
positional dependence of the elastic moduli 
found experimentally. The ultrasonic method, 
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although long, has certain advantages. For 
example it gives information on the interiors of 
bulk specimens whereas the electron microscope 
probes only the surface layers of bulk specimens, 
or thin sections by transmission. In hygroscopic 
glasses, like some phosphates for example, the 
surface structure has not the same structure as 
the rest of the specimen; layers rich in water may 
give indications on electron micrographs which 
obscure signs of phase separation, and the same 
problem may also arise with transmission sec- 
tions. The ultrasonic method cannot by itself 
identify the presence or absence of multiphase 
systems. However, as will become apparent 
later, multi-phase oxide glasses are uncommon. 
In the usual case of miscibility gaps involving 
two phases only, whilst the absence of gaps can 
be established, their presence can be suggested 
but not proved. In spite of these limitations it 
seems well worthwhile to apply the ultrasonic 
technique to phosphate glasses, given the dif- 
ficulties of performing electron microscopy on 
some compositional regimes of these systems. 
The method can possibly help, for example, in 
deciding which compositional ranges should be 
given priority for electron microscopy and other 
phase separation tests. 

For the present study we had available orig- 
inal ultrasonic measurements of the elastic 
moduli of the entire vitreous range of the oxide 
systems Co-P-O and H-P-O. These measure- 
ments and the methods of preparation and 
chemical characterization of the glasses have 
been described elsewhere [8 11]. 

In earlier literature [12], binary P205 systems 
(involving potassium, sodium, lithium, barium, 
strontium, calcium, magnesium, beryllium, silver, 
tellurium, zinc, cadmium and PbO) have been 
considered to have continuous ranges of glass 
formation from pure P205 to the highest added 
oxide content, i.e. no regions of stable immisci- 
bility were assumed to exist. However, micro- 
phase separation with droplet structure is 
observed in MgO-P205 glasses [12], and also 
P2Os acts as a nucleating agent in precipitating 
phase separation in Li202-SiO 2 and Na2SiOz 
glasses [13]~ 

More recently [14], the possibility of phase 
separation in the PbO-P205 system has been 
proposed from an analysis of density data. So 
phase separation in phosphates remains very 
much an open question. The positive feature of 

the ultrasonic method to be described is that the 
absence of phase separation can be proved, 
whereas for phosphates one can never be 100% 
sure that phase separation is absent from elec- 
tron microscopy alone. 

2. General theoret ical  
considerat ions of phase 
equi l ibr ium in relation 
to ultrasonic tests 

Phase separation is a thermodynamical 
phenomenon, i.e. under appropriate conditions 
a single phase splits into two or more phases if 
the free energy of the system is lowered in the 
process. According to Gibb's phase rule, for a 
binary glass (i.e. one independent component) 
only two phases can co-exist in equilibrium over 
a finite temperature range. The proposed ultra- 
sonic test is thus applicable. For a ternary glass 
system (two independent components) up to 
three phases can co-exist in equilibrium over a 
temperature range, without violation of the 
phase rule. Interestingly, however, there appears 
to have been no direct observations of three- 
phase phenomena in ternary glass systems, 
although a three-phase region traversing the 
Vycor and Pyrex compositional range of the 
Na20-B203-SiO2 system has been proposed on 
various grounds [15, 16]. Concerning glass 
systems with more components, no report of 
multi-phase separation exists amongst the exten- 
sive literature references presented here. As to 
the Co-P-O glass system under consideration 
here, at first sight (since it contains both Co 2+ 
and Co 3+ cations) it would be regarded as 
a ternary glass system with compositions 
x CoO(x - y)C0203(1 - x - y ) P 2 0 5  where 
the values of the mole fractions x and y are given 
by the analysed amounts of (Co 2+ + C03+), 
Co 2+ and Co 3+ , as presented in Fig. 1. However, 
it is clear that for agiven x, y is fixed. In fact the 
relative values are determined by the redox 
equilibrium in the melts [10]. So there is only one 
independent variable specifying the composition 
and the glasses should be considered as a binary 
system. So in any event it is only possible for two 
phases to co-exist under the observation con- 
ditions and it is valid to apply the ultrasonc test. 

For a binary system the simplest case of phase 
separation is when a single miscibility gap exists 
between two mole fractions C1 and Ca of one 
component. For mole fractions C < C1 just a 
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Figure 1 The chemical composition of Co 
P O  glasses prepared by melting together 
Co304 and P205 in open crucibles according to 
the procedures described by Higazy and 
Bridge [10]. 

single phase (Phase 1) exists with composition 
continuously variable between 0 and G.  Simi- 
larly for C > C2 there exists but a single phase 
(Phase 2) with composition continuously vari- 
able between C2 and some maximum value Cm,x 
which marks the end of the vitreous range. For 
C~ < C < C2, Phases 1 and 2 coexist with fixed 
compositions C~ and C2 respectively, and with 
relative proportions of (C2 - G) / (C2-  CO 
and ( C -  G) / (C2-  C~), respectively. In a 
more complicated case there may be two or 
more miscibility gaps and correspondingly a 
number of intermediate single-phase and two- 
phase regions. So essentially the ultrasonic test 
can only be successfully applied by considering 
all reasonable possibilities for the position and 
width of miscibility gaps in a binary glass 
system. 

3. Theoret ical  considerat ions of the 
elastic behaviour of two -phase  
systems 

So far, a number of investigators have con- 
sidered theoretically the problem of expressing 
the bulk elastic behaviour of a two-phase 
material in terms of the amounts and properties 
of the end-member materials [17-21]. Generally, 
they discussed the upper and lower bounds 
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between which the various elastic properties 
must lie. 

Consider a binary system with a miscibility 
gap between weight fractions W~ and W2 of one 
of the components. Thus a material having 
weight fraction X (Xj < X < )(2) of this com- 
ponent is a mixture of two phases with respective 
compositions X1 and X2, which we shall call the 
end-member components. Assuming that the 
volume of phase mixture is made up of the 
volumes of the constituent phases, the volume 
fraction of the second phase (composition)(2) in 
the material of composition X is related to the 
weight fractions and densities (Q~ and Q~) of the 
end-member components by 

= 
e,(X- X,) 

(x- x ~ ) ( o ,  - e~) + (x~  - x , ) e ~  

(1) 

For binary material consisting of a matrix of 
volume fraction Vl and a second phase of 
volume fraction V2, the widest possible bounds 
can be found by assuming that the material is 
arranged in layers either parallel or perpen- 
dicular to an applied uniaxial stress. The first 
(Voigt) model assumes uniform strain; and the 
bulk modulus K*, the shear modulus G* and the 



Young's modulus E* of the composite become 

K* = (1 - V2)K, + V2K2 (2) 

G* = (1 - V2) G, + V2Gz (3) 

E* = (1 - 112)El + VzE2 (4) 

where the subscripts 1 and 2 refer to the first and 
second end-member components. 

The second (Reuss) model assumes uniform 
stress, and the moduli become 

1 (1 - -  V=) V2 
K t  - / q  + (5) 

1 (1 - -  V2) V2 (6)  
G* - G, + 

1 (1 - -  V2) V2 
E *  - E, + ff22 (7) 

Equations 2 to 4 form the upper limits and 
Equations 5 to 7 form the lower limits of the 
various quantities. 

Evidently, one would expect the elastic moduli 
of a two-phase material to lie close to the Voigt 
and Reuss bounds only if the sample as a whole 
(i.e. the region over which the elastic moduli are 
measured) is rather anisotropic. A good example 
would be glass-fibre reinforced composites with 
oriented fibres. Hashin and Shtrikman [19] 
derived narrower upper and lower theoretical 
bounds for the moduli, for an arbitrary phase 
geometry subject only to the conditions that the 
sample as whole is isotropic and homogeneous. 
These conditions imply that one phase must 
consist of small particles and if the sample is 
divided up into smaller regions of equal 
volume z, but still large compared with the par- 
ticle size, the overall number, size and shape 
distribution of particles within each volume is 
the same. With this proviso the particles can 
have an arbitrary distribution of size and shape, 
oossibly highly inhomogeneous on a microscopic 
scale. This is useful for it implies that the analy- 
sis will be valid for both the spinodal mechanism 
of phase separation (where one phase consists of 
multiple-connected filaments) and phase separ- 
ation by the nucleation process. It is interesting 
to note also that subject to the above conditions 
of macroscopic isotropy and homogeneity, 
Hashin and Shtrikman [19] actually derived 
upper and lower bounds for the general case of 
a multi-phase material. However, for present 

purposes the argument of the preceding section 
implies that only the two-phase case is required. 

Hashin and Shtrikman's expressions [19] 
were, for/s > K1 and G1 > G1, 

K* = K,-I- 1 3(1 - II2) (8) 
- - +  
K2 - Ki 3Kl + 4Gl 

l - - V 2  
K* = /s + (9) 

1 3V2 + 
1s - K2 31s 4- 4G2 

G* = GI + 
1 6 (K,  + 2 G , ) ( 1  - V2) 

+ 
G2 - G1 5G1 (3K1 + 4G1) 

(10) 

1-v  
GI~ = G 2 4- 

1 6(K2 + 2G2) 112 - - +  
Gi -- G2 3G 2 (3K2 + 4G2) 

(11) 

In these relations, K~ and G~ provide upper 
bounds, and K~ and G~' provide lower bounds 
on the respective moduli. 

In the special case where one phase of volume 
fraction V2 consists of spherical particles the 
lower bounds become exact expressions for the 
composite moduli, irrespective of the size dis- 
tribution of the spheres. Analogously, the upper 
bounds become the exact result when the phase 
of volume fraction (1 - V2) consists of spheri- 
cal particles, of arbitrary size distribution. 

Values of Young's modulus were obtained by 
Hashin and Shtrikman [19] from the calculated 
bulk and shear moduli through the relation 

9K* G* 
E* - (12) 

3K* 4- G* 

Upper and lower bounds on E are produced by 
inserting upper-bound or lower-bound values of 
K* and G*. 

The slopes and curvatures of these relations 
shown in Equations 8 to 12 show that 

(a) the slopes of the modulus-volume frac- 
tion curves depend only on the relative values of 
the end-member moduli; 

(b) the curvatures of such plots are always 
positive, i.e. concave upward; and 

(c) no maxima, minima or points of inflection 
or discontinuities can exist. 

4 4 8 7  



T A B L E  I Curvature of Hashin-Shtrikman/Kerner elastic :moduli* (after Shaw and Uhlmann [17]). Weight per cent 

composition plots; 0 denotes density, a denotes Poisson's ratio. 

Effective bulk modulus, K* Curvature Effective shear modulus, G* 

3K 2 + 4G~ 
K z > K L O--LI < G 2 > G I 

02 3K 1 + 4G~ 
Positive 

K2 < KI 01 3K2 + 4GI 
- -  > G 2 < G 1 
02 3KI + 4GI 

3K 2 + 4GI 
K 2 > K~ 0~ > G2 > GI 

02 3KI + 4G1 
Negative 

3K2 + 4Gi 
/(.2 < Ka 0~ < G2 < GI 

02 3KI + 4GI 

01 3K2 + 4GI 
K 2 = K I or - Zero G 2 = G I or - -  - 

02 3K~ + 4G I 

< Gl(7 -- 5al) + G2(8 - 10al) 

02 Gj(15 - 15al) 

> G1(7 -- 5~1) + G2(8 -- 10aj) 

02 GI(15 - 15al) 

> G1(7 -- 5trl) + G2(8 - 10r 

02 G1(15 -- 15al) 

< Gl(7 -- 5o"1) + G2(8 - 10o't) 

Qz G~(15 - 15oh) 

01 Gl(7 -- 5trl) § G2(8 - 10crl) 

Q2 G~(15 -- 5al) 

+The effective Young's modulus E* will have the same curvature as the bulk and shear moduli over the same composition. 
range. It should be noted that the shear modulus relations are quite insensitive to variations in Poisson's ratio. For example, 
variations in the effective shear moduli of less than one per cent result from changing a from 0.2 to 0.3. 

When elastic moduli are plotted as a function of  
the weight fraction X of one of  the binary com- 
ponents (a) and (c) remain unchanged, but Shaw 
and Uhlmann [17] deduced that both positive 
and negative curvatures can be obtained accord- 
ing to the criteria summarized in Table I. We 
include this table because curvature can be a 
very useful parameter to use in phase separation 
tests, given that curvatures can be discerned even 
when there is a considerable spread in the experi- 
mental data. 

4. The validity of comparing Hashin 
and Shtrikman formulae with 
ultrasonically determined elastic 
moduli of glasses 

It is important  to emphasize that the moduli 
derived by Hashin and Shtrikman [19] refer to 
static stress and strain distributions. However, 
ultrasonically applied stress and strain distribu- 
tions exhibit cyclic variations across the sample 
in the direction of  the wave propagation, at any 
instant of  time. Ultrasonically one measures 
bulk and shear modulus from the equations 

K +  3"-c = c = ( 1 3 )  

where 0 is the density, Cc is the compressional 
wave velocity and C-r is the shear wave velocity, 
each quantity being a spatial average over the 
bulk sample. Consider the sample divided into 
layers parallel to the plane wave fronts, and of  
thickness Ax in the propagation direction. If  
Ax ,~ 2 (the ultrasonic wavelength) the total 
distributed stress over the two faces of  any layer 
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will be almost the same, at any instant. If  at the 
same time the values of  Co, CT and Q averaged 
over each layer are the same, the moduli calcu- 
lated from Equation 13 will be comparable with 
the static analysis of  Hashin and Shtrikman [19]. 
It is clear that these conditions can only be met 
if the overall number, size and shape distribution 
of  the particles of  one phase is the same in all 
layers. A minimum requirement for this to be the 
case is that the mean particle size be ,~ x and 
therefore ~ 2. 

For  typical measurement frequencies (15 MHz) 
and wave velocities (4000msec-~), the wave- 
length in oxide glass is ,-~0.3mm. Since two- 
phase microstructures smaller than 0.05/~m are 
expected in multi-phase glass, the required con- 
dition seems to be easily met. If  it could not have 
been met, ultrasonic wave velocities and the cor- 
responding ultrasonically determined elastic 
moduli would have become sensitive functions 
of  particle size relative to the wavelength [22, 23] 
and the Hashin and Shtrikman analysis could 
not then be applied. 

Secondly, it will be appreciated that some 
composite materials can contain areas of 
debonding between the two phases of  interest, 
i.e. there can arise air-filled or more generally 
fluid-filled gaps betwen them. Even though these 
gaps are invariably extremely small on the scale 
of  the particle size, it is possible that they 
invalidate the boundary conditions assumed in 
Hashin and Shtrikman's derivation. When elastic 
moduli are measured ultrasonically rather than 
quasi-statically, there is the added complication 



that the wave propagation properties depend 
upon the width of the gaps relative to the 
wavelength, i.e. the effect of the gaps on the 
measured modulus becomes frequency-depen- 
dent. This problem should not arise in the case 
of glasses in which particle sizes and separations 
are expected to be much less than the wave- 
length, and correspondingly the gaps between 
the solid phases will be even smaller. 

5. Application to cobal t -phosphate  
glasses  

Fig. 2 illustrates schematically the form of the 
compositional dependence of all the elastic 
moduli of the Co-P-O system throughout the 
entire vitreous range, 0 to 60mo1% CoO 
(43 wt %). Inspection of this curve in the light of 
Criterion (c) (Section 3) suggests immediately 
that there can be no two-phase immiscibility 
gaps traversing compositions 8 and 32wt%. 
The next stage is to look for possible gaps in 
between or to either side of these regions, i.e. we 
refer to the ranges 3.4 to 8.2wt%, 8.2 to 
32.4 wt % and 32.4 to 43.0 wt %. The reason for 
quoting several significant figures here is that we 
refer to the analysed compositions of actual 
glass samples. The lowest figure gives the com- 
position of the prepared Co-P-O glass having 
the smallest quantity of cobalt. We were unable 
to prepare glasses of compositions 0 to 3.4 wt % 
CoO [8]. Two-phase structures within these 
three ranges cannot be ruled out by visual 
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Figure 2 Schematic diagram represents the variation of bulk 
modulus with composition (weight fraction) of C o - P - O  
glasses. 

inspection of Fig. 1, so more detailed tests in the 
form of a full application of Equations 2 to 12, 
together with a plot of experimental data on a 
larger scale than that of Fig. 1, are required. 
Taking the two ends of each range as the end- 
members in these equations, the variation 
in volume fractions being calculated from 
Equation 3, the variations of the theoretical 
bounds of each modulus with weight fraction of 
(CoO + Co203) are drawn in Fig. 3, which also 
indicates the experimental data points. 

Examination of the figures shows that there is 
no evidence for two-phase immiscibility gaps 
covering these three compositional ranges in the 
Co-P-O glasses. This is because all experimental 
values of bulk, shear and Young's moduli lie 
well outside the upper and lower bounds of the 
K*, G* and E* moduli. One can next seek 
narrower miscibility gaps within these ranges by 
bringing the end-members in the theoretical 
plots closer together. 

To obtain a set of different H-S plots with 
variable end-member separations is clearly an 
unsatisfactory time-consuming procedure. More- 
over, if we make the separations much smaller 
than the ones already considered the number of 
experimental data will be too small to permit a 
useful discussion. It is simpler instead to analyse 
the curvatures obtained in present plots. Now 
consider one or both the end-members to be 
moved inwards from the extreme values already 
discussed. Since experimental modulus and den- 
sity values (Fig. 4) vary gradually from the 
values obtained at the composition extremes 
already discussed, it is obvious that the cur- 
vatures of the H-S plots will vary only gradually 
from the values displayed in Fig. 3. 

When the curvatures displayed in these plots 
are pronounced it is unlikely that there will be a 
change in sign on moving together the end- 
members. Now for the ranges 3.4 to 8.2wt % 
and 8.2 to 32.4wt % the H-S curvatures and the 
experimental modulus plots have pronounced 
curvatures of the opposite sign. We conclude 
that it is unlikely that there is a miscibility gap of 
any size within these compositional ranges. 
Coming to the range 32.4 to 43.0wt %, the cur- 
vature of both the H-S and the experimental 
modulus plots are of the same sign and of similar 
magnitudes. So we will not rule out the possibil- 
ity of a narrow immiscibility gap within this 
range, from the ultrasonic data; and for these 
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Figure 3 Comparison of observed elastic modulus with theoretical upper and lower bounds that would arise if phase 
separation is present, for C o - P - O  glasses. Full circles represent the experimental data, solid lines show Voigt and Reuss 
boundaries, and dashed lines represent Hashin and Shtrikman [19] boundaries, with various assumed miscibility gaps. 
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high cobalt contents it is particularly tempting to 
suppose that the glasses might consist of mix- 
tures of two amorphous phases of approxi- 
mately metaphosphate and orthophosphate 
compositions. 

Further investigation of possible phase 
separation phenomena in the Co-P-O glass sys- 
tem was made using electron microscopy. The 
investigations were based on the plastic replica 
technique, in which glass specimens were frac- 
tured. A plastic replica of a fractured glass sur- 
face was made using an acetate film softened by 
immersion in acetone for about 5 sec. When the 
acetate film was dry it was removed from the 
surface and shadowed with germanium and the 
carbon support film evaporated on to it using a 
coating unit. The plastic film was then removed, 
using solvent vapour, and the shadowed carbon 
replica supported on a grid ready for examina- 

3.2 
~E 

o 
c~  

~ 3 . 0  

Z 2.8 

2.6 

CoO+CozO 3 (tool %) 
20 40 

] r 

tion using a JEOL JEM-7 100 kV transmission 
electron microscope. 

Replica electron micrographs of Co-P-O 
glasses showed no evidence that immiscibility is 
present in Co-P-O glass, so there is reasonable 
agreement between electron micrograph obser- 
vations and the predictions of the above models, 
i.e. the ultrasonically determined elastic modulus 
tests. Transmission electron microscopy, requir- 
ing thin glass samples, was not attempted, as it 
was felt that water absorption would render all 
results unreliable. 

6. Application to HzO-P2Os glasses 
In the case of H20-P;O5 glasses, to perform a 
test for the possibility of two-phase behaviour 
within the compositional range of this system 
ultrasonically, two compositional regions were 
chosen. The first region lies between 0 to 11 wt % 
(50 tool % H 2 0 ) ,  and the second region from 0 
to 100 wt % H20. The variation of experimental 
and predicted values of bulk, shear and Young's 
moduli with weight fraction of H20 are plotted 
in Fig. 5. 

It is seen from Figs. 5a and b (using HPO3 and 
P205 as two end-members) that the experimental 
elastic modulus data of G and E lie between 
the upper and lower bounds of the Hashin- 
Shtrikman boundary in the glass compositional 
range between 3 and 11 wt % H20. Also in Fig. 
5d (when H 2 0  and P205 are used as two end- 
members) the experimental bulk modulus data 
lie between the upper and lower bounds of K* in 
the same compositional range (3 to l l w t %  
H20) and lie only just outside the lower bound 
for the remaining composition range. And in 
both cases we note that the H-S plots and the 
experimental moduli have the same sign and a 

6O 

Figure 4 Compositional dependence of Co-  
P O glass densities. 
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Figure 5 Comparison of observed elastic modulus with theoretical upper and lower bounds that would arise if phase 
separation is present, for H20-P205 glasses. Full circles represent the experimental data, solid lines show Voigt and Reuss 
boundaries, and dashed lines represent Hashin and Shtrikman boundaries, for various assumed miscibility gaps. 

similar magni tude  o f  curvature.  The conclusion 7 .  D i s c u s s i o n  a n d  q u a l i t a t i v e  
must  be that  phase separat ion in the H 2 0 - P 2 0 5  t h e o r e t i c a l  i n t e r p r e t a t i o n  o f  
system is a possibility. All samples o f  glass r e s u l t s  
absorbed  surface water too  rapidly to make  elec- It  seems worthwhile to a t tempt  to compare  
t ron microscopy  practicable, results with what  might  be expected theoretically 
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from available data on the glass systems. In a 
binary oxide glass containing two types of cation 
in one homogeneous phase, one can identify two 
basic kinds of bond, indicated by subscripts i 
( i =  1,2 . . . .  ) and j ( j  = 1 , 2 , . . . ) .  The i 
bonds are associated with oxygen atoms which 
are shared between identical cations or which are 
bonded to only one cation (for example P=O 
bonds) while the j bonds are associated with 
oxygen atoms shared between different cations. 
Let n denote the number of bonds per cation of 
energy V, where Vis negative and IV] is the bond 
dissociation energy at absolute zero. Further let 
N and N ~ be the number of cations which are 
joined to the same cation or a different cation 
through a common oxygen atom, respectively. 
The Helmoltz free energy of the glass is 

F = U~niV i4 -  S l ~ n j V j  
i j 

- f~Ef~(Cp/T) dT]dT- TS(c) (14) 

where the summation terms contain the zero- 
point internal energy, Cp is the heat capacity, the 
integral term contains the vibrational internal 
energy and entropy, and S(c) is the entropy of 
mixing. The Ei term essentially varies monoton- 
ically with c, so at T --, 0 K, only the magnitude 
of the Y~j terms can cause the energy of the glass 
to be higher or lower than the unmixed oxides. 
If the former is the case the glass is unstable and 
tends to split into the two separate oxides, i.e. F 
has two minima at c -- 0 and c = 1 respectively. 
On general statistical grounds it is accepted that 
S(c) exhibits a single minimum at some inter- 
mediate value of c. So the effect of this term is 
always to shift the minima in F inwards to mole 
fractions C~ > 0 and C2 < 1. As Tincreases the 
miscibility gap Cj - (72 therefore decreases pro- 
gressively, until a single minimum (implying no 
phase separation) is obtained above a tempera- 
ture Tc (the upper consulate temperature). 

As for the Cp term, since in general terms the 
contribution to Cp of a given bond increases 
with decreasing vibrational frequency v, and v 
decreases with increasing V, Cp increases with 
increasing V (i.e. decreasing I V]). So com- 
positional gradients in Cp are of the same sign 
as compositional gradients in zero-point energy, 
and the negative sign in front of Cp thus implies 
that compositional gradients of the vibrational 
free energy oppose those of the zero-point 

energy. So, for example, a maximum in the free 
energy at low temperatures is depressed with 
increasing temperature and eventually becomes 
a minimum at sufficiently high temperatures, i.e. 
on account of the vibrational term a phase 
separation, impossible at low temperatures, may 
become possible at elevated temperatures. How- 
ever, at ordinary temperatures oxide glass melts 
are regarded as network liquids, i.e. only a small 
fraction of bonds are ruptured so that the 
vibrational energy is expected to be small com- 
pared with the zero-point term. Ordinarily, 
therefore, we expect the effect of the vibrational 
term to be small so that valid conclusions can be 
reached by examination of the zero-point term 
alone. 

According to the zero-point term, since (N 4- 
N 1) is a constant for a given glass composition, 
the condition favouring separation into separate 
oxide phases is 

y ,.,j vj > Z . , v ,  (15) 
j i 

which, since V is negative, can be alternatively 
written 

Y' nj I Vjl < ni [Vii[ (16) 
j i 

This relation can be applied qualitatively to 
binary glasses by making the following assump- 
tions: 

(a) It is generally accepted [24] that for a bond 
between a given pair of atoms, the strength IV[ 
decreases as the length increases. 

(b) For such a bond the length and therefore 
the strength varies relatively little from one 
structural grouping to another. 

(c) In the absence of direct information (for 
example from extended X-ray absorption fine 
structure measurements), it is assumed that 
coordination numbers in a single glass phase 
resemble those obtaining in crystalline ana- 
logues (i.e. crystals of comparable composition), 
when they exist. 

In the present discussion we have therefore 
drawn on bond lengths and coordination num-. 
bers already known for the crystal structure of 
P205 [25], cobalt metaphosphate (Co(PO3)2) [26, 
27], cobalt pyrophosphate (Co2P207) [28], CoO 
[29-31], and metaphosphoric acid (HPO3) [11, 
28, 32]. Data on oxides containing the Co 3+ ion 
have been ignored but we consider it unlikely 
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that the small proportion of this ion in our 
glasses has a bearing on phase separtion. 

7.1. Application to C o - P - O  glasses 
The P-O bond length changes relatively little 
between the different structural groups, being 
0.156, 0.1543 and 0.1534 nm in P205, meta- 
phosphate and pyrophosphate respectively. 
Also the phosphorus coordination remains 
tetrahedral throughout, so the presence or 
absence of phase separation rests with the P=O 
and Co-O bonds. In CoO which has the fcc  
structure of NaCI, the cobalt has octahedral 
coordination and a bond length of 0.21nm. 
However, in vitreous cobalt metaphosphate 
(composition COO'P205) the cobalt coordi- 
nation is reduced to tetrahedral [27] while the 
mean bond length is increased to 0.233 nm [26]*. 
Both factors act together to depress the value of 
Y.njl Vii relative to Y~nil Vii, thus to favour phase 
separation into the constituent oxides. A similar 
conclusion would be reached if we considered 
the cobalt-rich phase in a phase separation 
model to resemble pyrophosphate (the com- 
position of which approximates to the upper 
limit of the vitreous range found) rather than 
CoO, since the former has almost the same mean 
Co-O bond length (0.2083nm) and the same 
cobalt coordination as the latter. Concerning the 
P=O bond, the infrared spectra of these glasses 
[9] suggest that this bond is progressively rup- 
tured with increasing cobalt content, to be 
replaced by P - O - C o  bridging units. Now the 
P=O bond dissociation energy for P4010 
(156 k cal tool 1) is almost twice the P-O energy 
(80kcalmol 1). This presents an even greater 
contribution to the reduction of 2 nj I Vii than the 
previously discussed reduction in cobalt coordi- 
nation number, and strongly favours phase 
separation and suggests that the P=O bond rup- 
tures indicated by the infrared spectra should 
not take place. Indeed one could argue that to 
compensate for the effect of the P=O bond rup- 
ture thus to make the single phase favourable, 
the cobalt coordination would have to be dou- 
bled to sixteen, which is unknown in any cobalt 
compound. 

Since experimentally from ultrasonic and elec- 
tron microscope evidence (Fig. 6)a single phase 
has been found, at least for compositions below 

50tool % CoO, we can only conclude that the 
vibrational energy and entropy in the melt 
must be responsible for the formation of a 
single phase. It is certainly known that binary 
phosphate glasses exhibit unusual vibrational 
behaviour, inasmuch as in a given system, some 
compositions exhibit strongly anomalous third- 
order elastic constants (TOEC) whilst others 
display normal TOEC [33]. Moreover a strong 
maximum in the composition dependence of the 
thermal expansion coefficients in Co-P-O 
glasses has been observed at the metaphosphate 
composition [27]. It is thus clear that the vibra- 
tional modes in phosphate glass exhibit a singu- 
lar composition dependence, and so therefore 
will C o . 

7.2. Application to H20-P205 glasses 
We shall assume that a single phase consisting of 
50 tool % H20 will have a structure resembling 
metaphosphoric acid (HPO3), in so far as the 
P-O bond lengths are concerned. This length is 
0.14 nm [27, 32], substantially less than in P205. 
We conclude that the formation of metaphos- 
phate groupings leads to a substantial contribu- 
tion to E n: V: from the P-O bonds (coordination 
number assumed unchanged.) We shall assume 
that the energies associated with the P=O bond 
remain the same in P205 and HPO3, and likewise 
for the OH group in water and HPO3. Thus the 
only remaining consideration is the energies of 
the hydrogen bonds in water and in metaphos- 
phate. Patel e t  a l .  [11] have proposed a three- 
dimensional randomly cross-linked network for 
the structure of metaphosphate glass (assumed a 
single phase), where the hydrogen bond involves 
essentially the P=O bond in P=O---OH-P link- 
ages. Such bonds would be substantially stronger 
than the hydrogen bonds H-OH---OH-H in 
water. The nearest equivalent to the proposed 
bond would be the OH---O= bond in the acetic 
acid dimer. This bond has a stretching force 
constant of 39 N m- 1, more than twice the value 
of the same constant in the hydrogen bond in ice 
(18 N m- l). Since the strong hydrogen bond in 
HPO3 represents a bond linking two different 
cations (P and H) through oxygen, it represents 
a substantial contribution to Z n: [ V,.[. So we have 
two "zero-point" factors acting against phase 
separation in the H20-P205 system, which is 

*As the bond length for Co(PO3) 2 is unavailable in the literature, we have taken the figure for the corresponding bond in 
the nearest equivalent structure (CoNH4P3Og), for which a value is available. 
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Figure 6 (a, b). Typical replica electron micrographs of C o - P - O  glasses, which show that there is no evidence that 
immiscibility is present in C o - P - O  glasses: (a) glass with composition of 7.6 mol % CoO, and (b) glass with composition of 
20 tool % CoO. (c, d). Typical replica electron micrographs of C o - P - O  glasses, which show that there is no evidence that 
immiscibility is present in C o - P - O  glasses: (c) glass with composition of 35 mol % CoO, and (d) glass with composition of 
54mo1% CoO. 

possibly contrary to the indications of the ultra- 
sonic experiments in the case of the water-rich 
glasses. The conclusion must be the same as in 
the case of C o - P - O  glasses, i.e. that the phase 
structure of the melt is determined by the vibra- 
tional energy and entropy of the melt: for as 
argued at the beginning of this section, the vibra- 
tional term in Equation 14 tends to oppose any 
effect of the zero-point energy term. 
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